of chain length <5 but $H_{m}{ }^{E}$ was overestimated significantly for mixtures involving larger differences. Thus, some discretion must be exercised if the parameters obtained above are used for mixtures other than those studied in the present work.

Acknowledgment

We are indebted to P. J. D'Arcy and C. J. Halpin for technical assistance during this investigation.

Glossary

$H_{\text {m }}{ }^{\text {E }}$	excess molar enthalpy, $\mathrm{J} \mathrm{mol}^{-1}$
h^{\prime}	coefficlents in eq 1
$h_{s t}$	molar interchange enthalpy per unit relative molecular surface area for contact between surfaces of types s and t
k	skewing factor in eq 1
q_{1}	relative molecular surface area of component i
\boldsymbol{x}	mole fraction of 2,4-dimethylpentane

Greek Letters
$\alpha_{s, I} \quad$ surface fraction of type surface in component i

Regetry No. 2,4-DMP, 108-08-7; hexane, 110-54-3; heptane, 142-82-5; octane, 111-65-9; dodecane, 112-40-3.

Lherature Ched

(1) Kimura, F.; Benson, G. C.; Halpin, C. J. Fluid Phase Equillb. 1983, 11, 245.
(2) Hamarn, S. E. M.; Kumaran, M. K.; Benson, G. C. Flukd Phase Equllbb 1984, 18, 147.
(3) Hamam, S. E. M.; Kumaran, M. K.; Benson, G. C. J. Chem. Thermodyn. 1984, 16, 537.
(4) Tanaka, R.; D'Arcy, P. J.; Benson, G. C. Thermochlm. Acta 1975, 11, 163.
(5) "Selected Values of Properties of Hydrocarbons and Related Compounds, Thermodynamics Research Center Hydrocarbon Data Project"; Thermodynamics Research Center, Texas A \& M University: College Station, TX. See Tables 23-2-(1.101)-a and 23-2-(1.202)-a.
(6) Burchfleld, T. E.; Bertrand, G. L. J. Solution Chem. 1975, 4, 205.
(7) Kumaran, M. K.; Benson, G. C., to be submitted for publication.
(6) Ho, C. L.; Davison, R. R. J. Chem. Eng. Datr 1979, 24, 293.
(9) Liu, E. K.; Davison, R. R. J. Chem. Eng. Data 1981, 26, 85.
(10) Kehlalan, H. V.; Grolier, J.-P. E.; Benson, G. C. J. Chlm. Phys. Phys.-Chim. Biol. 1978, 75, 1031.
(11) Bondi, A. "Physical Properties of Molecular Crystals, Liquids and Glasses"; Wiley: New York, 1968.

Vapor Pressures of Binary ($\mathrm{H}_{2} \mathbf{O}-\mathbf{H C l},-\mathrm{MgCl}_{2}$, and $-\mathrm{CaCl}_{2}$) and Ternary ($\mathbf{H}_{2} \mathbf{O}-\mathbf{M g C l}_{2}-\mathrm{CaCl}_{2}$) Aqueous Solutions

Takeshl Sako,* Toshlkatsu Hakuta, and Hiroshl Yoshitome
Natonal Chemical Laboratory for Industry, Yatabe, Ibarakl 305, Japan

Abstract

Vapor pressures of binary aqueous solutions containing HCl (1.262-13.435 mol/kg), MgCl_{2} (1.051-4.104 mol $/ \mathrm{kg}$), and CaCl_{2} ($0.9568-5.002 \mathrm{~mol} / \mathrm{kg}$) were measured from 320 to $\mathbf{4 0 0} \mathrm{K}$. Furthermore, those of a ternary solution containhing both $\mathrm{MgCl}_{2}\left(1.057 \mathrm{~mol} / \mathrm{kg}\right.$) and $\mathrm{CaCl}_{2}(2.905$ $\mathrm{mol} / \mathrm{kg}$) were also measured in the same temperature range. The apparatus for measuring vapor pressures was an all-glass Bourdon gauge and the prectsion of measurement was $\pm 0.1 \mathrm{~K}$ or $\pm 70 \mathrm{~Pa}$, whichever was larger. The experimental data for the binary solutions were filted to the Antolne type of equation adapted to concentrated aqueous solution and were in good agreement whth the calculated results for all solutions. On the other hand, the data obtalned for the ternary solution were compared with the values estimated by Teruya's method, and they both agreed well.

Introduction

Vapor pressure data of aqueous electrolyte solutions are important for the study of salt effects on vapor-liquid equllibrium. Data for a lot of aqueous electrolyte solutions are avallable in the literature $(1,2)$ and the correlation methods $(3-5)$ have also been reported. In this work, the vapor pressures of three binary $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl},-\mathrm{MgCl}_{2}\right.$, and $\left.-\mathrm{CaCl}_{2}\right)$ solutions and one ternary ($\mathrm{H}_{2} \mathrm{O}-\mathrm{MgCl}_{2}-\mathrm{CaCl}_{2}$) solution were measured by using an all-glass Bourdon gauge which was more accurate than that used previously for MgI_{2} solution (6). The results were correlated by the Antoine type of equation.

Expermental Section

Apparatus and Procedure. Vapor pressure was measured by using an all-glass Bourdon gauge similar to that devised by

Ewing (7). The form of the gauge is shown in Figure 1. It consisted of a thin-walled glass spiral (A), a pointer 25 cm in length (B), an outer tube 7 cm in dlameter (C), a sample container with a volume of about $30 \mathrm{~cm}^{3}$ (D), and a connecting tube of $0.25-\mathrm{cm}$ inside dameter (\mathbf{F}). The sensitivity of the gauge was 40 Pa . The volume occupled by the vapor phase was made as small as possible to minimize the change of liquid-phase composition due to distribution of water or HCl between both phases. For this apparatus in which the volume of the liquid phase was about $25 \mathrm{~cm}^{3}$ and that of the vapor phase was about $10 \mathrm{~cm}^{3}$, the change of the composition was negligible (within 0.1%). The temperature was measured within $\pm 0.1 \mathrm{~K}$ with a platinum resistance thermometer (E) calibrated against a standard thermometer. A mercury manometer readable to 13.3 Pa and a cylinder of nitrogen gas were connected ahead of tube G. The temperature of the air bath (H) was controlled to within $\pm 0.1 \mathrm{~K}$.

Before each run, the extraneous gas in the solution and apparatus was removed by use of a vacuum pump for 15 min at room temperature. The vapor pressure of a sample was determined by measuring the pressure outside of the spiral which was equal to the vapor pressure inside of the spiral. The position of the pointer in balance of the pressure on both sides was observed by means of a cathetometer. To examine the consistency of the apparatus, the vapor pressures of pure water were measured and they agreed well with the literature values (8) (the maximum deviation was 213 Pa at 387.6 K and the mean devlation was 67 Pa).
Materlats and Analycts. $\mathrm{HCl}, \mathrm{MgCl}_{2}$, and CaCl_{2} used in this work were of guaranteed reagent grade from Wacô Chemicals Co., and all the reagents were used whthout further purification. Water, which was delonized and distlled, was used throughout the experimental work.

The composition of the sample was analyzed after vapor pressure measurement. HCl was analyzed by acid-base titra-

Table 1. Vapor Pressures of HCl Aqueous Solutions

${ }^{a}$ Mean dev $=\sum_{i} \mid p_{i}($ calcd $)-p_{i}(\operatorname{exptl}) \mid /($ no. of data points $)$.

Figure 1. Vapor pressure apparatus: (A) glass spiral, (B) pointer, (C) outer tube, (D) sample container, (E) thermometer, (F) tube connecting A and $D,(G)$ mercury manometer and cylinder of niltrogen gas, (H) air bath.
tion with $100 \mathrm{~mol} / \mathrm{m}^{3}$ sodium hydroxide solution. MgCl_{2} and CaCl_{2} were titrated with $10 \mathrm{~mol} / \mathrm{m}^{3}$ EDTA solution. In order to
determine the molality of the electrolyte, the density of the sample was measured at 293.2 K by use of a density meter from Antone Paar Co., Ltd. The accuracy of analysis was within 0.3\%.

Results and Discussion

Elary Soltilons. Vapor pressures of binary aqueous solutlons were determined to about 160 kPa for several concentrations of the solutes. The experimental results are glven in Tables I-III. Figure 2 shows the relationship between $\log P$ and $1 / T$ for MgCl_{2} solution, and most of the points for each solute concentration lie on a line with slight curvature. This fact suggests that the experimental data may be correlated to the Antoine type of equation.

The original Antoine equation was modified to correlate the vapor pressures of aqueous electrolyte solutions. That is, the parameters A and B were assumed to be cubic functions of molality, m, of electrolyte:

$$
\begin{gather*}
\log p(\mathrm{kPa})=A(m)+B(m) /[T(\mathrm{~K})+C] \tag{1}\\
A(m)=A_{0}+A_{1} m+A_{2} m^{2}+A_{3} m^{3} \tag{2}\\
B(m)=B_{0}+B_{1} m+B_{2} m^{2}+B_{3} m^{3} \tag{3}
\end{gather*}
$$

Figure 2. Relation between $\log p$ and $1 / T$ for MgCl_{2} aqueous solution.
Table II. Vapor Pressures of $\mathbf{M g C l}_{\mathbf{2}}$ Aqueous Solutions

$T, \mathrm{~K}$	$p(\operatorname{exptl}), \mathrm{kPa}$	$p($ calcd $), \mathrm{kPa}$	$\mathrm{dev}, \mathrm{kPa}$
		$1.051 \mathrm{~mol} / \mathrm{kg}$	
322.6	11.33	11.23	
339.6	24.82	24.96	0.10
353.5	44.78	44.93	0.14
363.5	66.14	66.44	0.15
373.0	94.35	94.24	0.30
379.5	118.46	118.34	0.11
385.1	142.84	142.98	0.12
388.1	158.15	157.83	0.14
			0.32

mean dev $=0.1$

32

323.1	10.30
342.9	25.95
356.3	45.38
367.4	69.96
375.4	93.47
384.2	126.64
388.8	147.80
391.1	159.37

323.0	8.94
346.6	26.37
358.8	43.66
371.7	71.97
379.1	93.31
388.8	130.61
393.8	153.93

		$4.104 \mathrm{~mol} / \mathrm{kg}$	
349.7	25.26	25.21	0.05
363.8	44.52	44.66	0.14
375.4	68.93	68.93	0.00
384.1	93.52	93.60	0.08
390.5	116.13	116.08	0.05
394.9	134.46	133.98	0.48
397.8	146.90	146.98	0.08
			mean $\operatorname{dev}=0.13$

where parameters $A_{0}-A_{3}$ and $B_{0}-B_{3}$ are determined from the experimental data of the vapor pressure by the least-squares method and parameter C is that for pure water (the value of C was chosen to be -45.107 from the experimental results of the vapor pressure of water). Tables I-III give the vapor pressures calculated by eq 1-3, and Table IV summarizes the best-fit parameters in eq 2 and 3 . The calculated vapor pressures were in good agreement with the experimental results for all of the solutions.

To check the reliability of the vapor pressures, the normal boiling points (for HCl solution) and osmotic coefficients (for

Table III. Vapor Pressures of CaCl_{2} Aqueous Solutions

$T, \mathrm{~K}$	$\mathrm{p}($ exptl), kPa	$p($ calcd $), \mathrm{kPa}$	dev, kPa
		$0.9568 \mathrm{~mol} / \mathrm{kg}$	
339.6	25.23	25.25	0.02
353.5	45.42	45.45	0.03
363.2	65.94	66.45	0.51
372.8	94.31	94.65	0.34
379.3	118.66	118.88	0.22
385.2	144.22	145.11	0.89
388.8	163.13	163.33	0.20
			mean dev $=0.31$
		$2.059 \mathrm{~mol} / \mathrm{kg}$	0.08
323.1	10.62	10.54	0.09
343.1	26.61	26.70	0.14
355.9	45.32	45.46	0.26
367.3	70.21	70.47	0.38
375.4	94.84	94.46	0.44
382.5	121.16	120.72	0.99
386.7	139.89	138.90	0.75
390.5	157.99	157.24	mean dev $=0.39$

323.1	9.28	$3.084 \mathrm{~mol} / \mathrm{kg}$	0.05
344.6	25.09	9.23	0.04
357.4	42.55	25.13	0.17
369.9	68.65	42.72	0.24
378.9	95.36	68.89	0.30
386.7	124.64	95.06	0.69
394.5	160.80	123.95	1.10
		159.70	mean dev $=0.37$
322.7	7.73	$4.086 \mathrm{~mol} / \mathrm{kg}$	0.09
348.8	25.49	7.64	0.32
363.1	45.51	25.81	0.69
373.5	67.85	46.20	0.49
382.5	93.56	68.34	0.49
388.5	115.49	94.05	0.21
394.4	139.74	115.28	0.13
398.5	159.63	139.87	0.25
		159.38	mean dev $=0.33$
322.9	6.45	$5.002 \mathrm{~mol} / \mathrm{kg}$	0.04
348.3	21.37	6.41	0.07
363.7	40.19	21.44	0.41
375.4	63.36	40.60	0.02
384.3	87.38	63.38	0.25
391.4	111.69	87.13	0.70
396.2	130.47	110.99	0.46
402.7	160.61	130.01	0.64
			mean dev $=0.33$

Flgure 3. Bolling points of HCl aqueous solution.
MgCl_{2} and CaCl_{2} solutions) were determined from the experimental results and compared with the literature. The comparison of the boiling points is shown in Figure 3, where the

Table IV. Parameters in Eq 2 and 3

system	A_{0}	A_{1}	A_{2}	$10^{3} A_{3}$	B_{0}	B_{1}	B_{2}	
$\mathrm{H}_{2} \mathrm{O}-\mathrm{HCl}$	7.15695	-1.45515×10^{-1}	3.43402×10^{-2}	-1.37832	-1690.97	47.3468	-13.8392	7.04648×10^{-1}
$\mathrm{H}_{2} \mathrm{O}-\mathrm{MgCl}_{2}$	7.09562	-5.42893×10^{-2}	2.50527×10^{-2}	-4.02686	-1670.05	10.5198	-9.38085	1.07931
$\mathrm{H}_{2} \mathrm{O}-\mathrm{CaCl}_{2}$	7.09453	-2.84935×10^{-2}	-2.76703×10^{-3}	1.48604	-1669.84	3.76316	-1.45301	-4.17236×10^{-1}

Figure 4. Osmotic coefficlent as a function of temperature for $\mathbf{M g C l}_{2}$ aqueous solution.
boling points of this work were calculated by substttuting 101.3 kPa for p in eq 1. The agreement was excellent. The osmotlc coefficient, Φ, was computed by using the following equation:

$$
\begin{equation*}
\Phi=\frac{1000}{\nu m M_{w}}\left[\ln \left(\frac{p_{w}}{p_{w}^{0}}\right)+\frac{B_{T}\left(p_{w}-p_{w}{ }^{0}\right)}{R T}\right] \tag{4}
\end{equation*}
$$

where M_{w} is the molecular weight of water, ν is the number of moles of lons formed from 1 mol of electrolyte, p_{w} is the water vapor pressure of the solution and was calculated by eq 1-3, $p_{w}{ }^{\circ}$ is that of pure water at the same temperature as the solution, and B_{T} is the second virlal coefficient for water vapor. B_{T} is a function of temperature and was evaluated from the Ilterature (10). The plots of Φ vs. T for various molalitios are shown in Figures 4 and 5. In these figures the solid line represents the result obtained in this work, where the line below 323 K was determined by use of the extrapolated value of p_{w}. For CaCl_{2} solution, Φ in this work agreed well with the literature $(11,12)$. On the other hand, there is a discrepancy between the values in this work and the literature for MgCl_{2} solution (11, 13,14) (especlally in $1 \mathrm{~mol} / \mathrm{kg}$). As pointed out by Holmes et al., the literature values vary widely and the additional measurement may be required to resolve these discrepancies.

Ternary Solution. Experimental results of the vapor pressures of the ternary aqueous solution containing MgCl_{2} and CaCl_{2} are glven in Table V and were compared whth the calculation using the method proposed by Teruya et al. (5). According to their method, the water vapor pressure of ternary solution can be calculated as follows:

$$
\begin{equation*}
\operatorname{in} \frac{p_{w(m \mid x)}}{p_{w}^{0}}=\frac{1}{I_{t}} \sum_{k} I_{k} \ln \left(\frac{p_{w(k)}}{p_{w}^{0}}\right) \tag{5}
\end{equation*}
$$

where $p_{\text {wimas }}$ is the water vapor pressure of the ternary solution, $p_{w(k)}$ is that of the binary solution containing only the electrolyte k in the same ionic strength and temperature as the ternary mixture, $p_{w}{ }^{\circ}$ is that of pure water at the same temperature as the ternary mixture, I_{t} is the total ionic strength of the ternary mixture, and I_{k} is the lonic strength of the electrolyte \mathbf{k} in the ternary mixture. For $p_{m(x)}$ in this equation, the experimental data of this work were used. The calculated results are given in Table V and were in good agreement with the experimental ones.

Flgure 5. Osmotic coefficient as a function of temperature for CaCl_{2} aqueous solution.

Table V. Vapor Pressures of Ternary Aqueous Solution Containing $1.057 \mathrm{~mol} / \mathrm{kg} \mathrm{MgCl}_{2}$ and $2.905 \mathrm{~mol} / \mathrm{kg} \mathrm{CaCl}_{2}$

$T, \mathrm{~K}$	$p($ exptl $), \mathrm{kPa}$	p (calcd), kPa	dev, kPa
322.5	8.38	7.63	0.75
348.5	26.29	25.64	0.65
363.2	48.11	46.63	1.48
373.0	68.89	67.44	1.45
383.1	98.50	96.45	2.05
388.4	117.77	115.39	2.38
393.5	140.00	136.42	3.58
398.2	162.12	158.49	3.63
			mean dev $=2.00$

Acknowledgment

We express speclal appreclation to Professor I. Yamada of Nagoya Institute of Technology for his helpful advice regarding the present study and to Miss Yamabuki for her valuable experimental assistance.

Glossary

A, B, C constants of the Antoine equation
A_{0}, A_{1}, parameters in eq 2
A_{2},
A_{3}
B_{0}, B_{1}, parameters in eq 3
B_{2},
B_{3}
B_{T}
$I \quad$ ionic strength, $\mathrm{mol} / \mathrm{kg}$
$m \quad$ molality of electrolyte, mol/kg
$M_{w} \quad$ molecular weight of water
$p \quad$ vapor pressure, Pa
$R \quad$ gas constant, $\mathrm{cm}^{3} \cdot \mathrm{~Pa} /(\mathrm{mol} \cdot \mathrm{K})$
T temperature, K
$\Phi \quad$ osmotic coefficient
$\nu \quad$ number of moles of ions formed from 1 mol of electrolyte
Regiatry No. $\mathrm{HCl}, 7647-01-0 ; \mathrm{MgCl}_{2}, 7786-30-3 ; \mathrm{CaCl}_{2}, 10043-52-4$.

Lherature Cited

(1) "International Critical Tables"; McGraw-Hill: New York, 1928; Vol. 3, pp 357-77
(2) Perry, J. H. "Chemical Engineers' Handbook", 5th ed.; McGraw-Hill: New York, 1973; pp 3-60-3-67.
(3) Kawaguchi, Y.; Kanal, H.; Kajiwara, H.; Aral, Y. J. Chem. Eng. Jpn. 1981, 14, 243.
(4) Kusk, C. L.; Meissner, H. P. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 112.
(5) Teruya, K.; Hosaka, S.; Nakano, T.; Nakamori, I. J. Chem. Eng. Jpn. 1876, $9,1$.
(6) Sako, T.; Hakuta, T.; Yoshltome, H. Kagaku Kogaku Ronbunshu 1979, 5, 304.
(7) Ewing, V. C. J. Scl. Instrum. 1955, 32, 118.
(8) Weast, R. C. "Handbook of Chemistry and Physics"; CRC Press: Cleveland, $\mathrm{OH}, 1977$; pp D-159-60.
(9) Sako, T.; Hakuta, T.; Yoshitome, H. J. Chem. Eng. Jph. 1984, 17, 381.
(10) Le Fevre, E. J.; Nightingale, M. R.; Rose, J. W. J. Mech. Eng. Sci. 1975, 17, 243.
(11) Robinson, R. A.; Stokes, R. H. "Electrolyte Solutions"; Butterworths: London, 1959; pp 486
(12) Jakll, G.; Van Hook, W. A. J. Chem. Eng. Data 1972, 17, 348.
(13) Snipes, H. P.; Manly, C.; Ensor, D. D. J. Chem. Eng. Data 1975, 20 287.
(14) Holmes, H. F.; Baes, C. F.; Mesmer, R. E. J. Chem. Thermodyn. 1978, 10, 983

Recelved for review April 2, 1984. Revised manuscript recelved August 27, 1984. Accepted October 1, 1984.

Vapor Pressures of the $\mathbf{M g I}_{\mathbf{2}}-\mathbf{H}_{\mathbf{2}} \mathbf{O}-\mathbf{I}_{\mathbf{2}}$ System

Takeshl Sako," Toshlkatsu Hakuta, and Hiroshl Yoshliome
Natlonal Chemical Laboratory for Industry, Yatabe, Ibarakl 305, Japan

Vapor preseures for the $\mathrm{MgI}_{\mathbf{2}}-\mathrm{H}_{2} \mathrm{O}-\mathrm{I}_{\mathbf{2}}$ system were measured up to about 150 kPa . The mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to MgI_{2} and that of I_{2} to MgI_{2} were varied from 10.882 to 42.432 and from 0.01 to 8.0 , respectively. An emplrical method was suggested for correlating the vapor pressures In the ternary system. The agreement between the experimental and calculaied results was very good.

Introduction

The concentrating of aqueous solutlons containing I_{2} and MgI_{2} is an important process in the magneslum-lodine cycle for thermochemical hycrogen production (1). In order to desion this evaporation process, the vapor pressures of the MgI_{2} $\mathrm{H}_{2} \mathrm{O}-\mathrm{I}_{2}$ system were measured as the fundamental data.

Expermental Section

Vapor pressure data were obtained by means of the equipment and procedures described previously (2) except for two modifications: (a) the volume of the sample contalner was changed from 30 to $100 \mathrm{~cm}^{3}$ in order to minimize the change of liquid-phase composition during the evacuation of the air from the systern and (b) the liquid-phase composition was determined from the charged welghts of the drled pure I_{2} and MgI_{2} aqueous solution of known concentration. The change of the composition owing to evacuation was within 0.4% and that owing to partition of I_{2} and $\mathrm{H}_{2} \mathrm{O}$ between both phases was within 0.4%. Therefore, the total error of the liquid-phase composition was judged to be within 0.8%.

Results and Discussion

The vapor pressures of the $\mathrm{MgI}_{2}-\mathrm{n}_{1} \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$ system were measured up to about 150 kPa , where n_{1} is the mole ratio of $\mathrm{H}_{2} \mathrm{O}$ to MgI_{2} and n_{2} is that of I_{2} to MgI_{2}. The experiments were divided into three groups: (a) $\mathrm{MgI}_{2}-10.862 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$, (b) $\mathrm{MgI}_{2}-21.301 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$, and (c) $\mathrm{MgI}_{2}-42.432 \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$. The experimental results are given in Table I. Figure 1 shows the relationship between p and n_{2} at various temperatures, where

Flgure 1. ρ as a function of n_{2} for $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}-n_{2} \mathrm{I}_{2}$.
p is the vapor pressure of the $\mathrm{MgI}_{2}-\mathrm{n}_{1} \mathrm{H}_{2} \mathrm{O}-\mathrm{n}_{2} \mathrm{I}_{2}$ system smoothed by the Antoine equation: $\log p=A+B /(T+C)$. In this figure the y intercept is the vapor pressue of the $\mathrm{MgI}_{2}-n_{1} \mathrm{H}_{2} \mathrm{O}$ system (ρ_{1}) and can be calculated by the method proposed by the authors (3). Most of the points for each temperature and n_{1} lle on a straight line and so p was fitted by the least-squares relation

$$
\begin{equation*}
p=p_{1}+\alpha n_{2} \tag{1}
\end{equation*}
$$

where α is the slope of the straight line. Furthermore, the relationship between α and n_{1} is shown in Figure 2 from 343.2 to 393.2 K . The values of α were correlated by using the empirical equation

$$
\begin{equation*}
\alpha=\alpha_{0}+\alpha_{1} n_{1}^{1 / 2}+\alpha_{2} n_{1} \tag{2}
\end{equation*}
$$

The parameters α_{0}, α_{1}, and α_{2} at various temperatures are

